

Earth Studies using L-band Synthetic Aperture Radar

Paul A. Rosen

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 par@parsar.jpl.nasa.gov

SAK

reder

polarimetry

May 17, 1999 **Earthview Symposium** Tokyo, Japan

To the Reviewer of this Package:

 The following text slides will be supplemented by color images taken from published literature. This is a review talk, so there should be no concern about technology transfer or ITAR violations. JPL

DRAFT

Why L-band?

Physics of scattering

Strengths of L-band SAR Observations

- Show that L-band has more stable temporal properties
- Show that L-band penetrates vegetation
- Show that L-band penetrates dry soils
- Use published data to do so

Timeline of Civilian L-band SAR Development

 Make a timeline showing known SAR's using L-band in history from published records.

Early L-band Radars and Missions

- SEASAT
- SIR-A
- SIR-B
- AIRSAR

Early L-band Radars and Missions Science Results

- Oceans
- Land cover
- Penetration
- Archaeology

Polarimetric L-band Radars and Missions

- AIRSAR
- SIR-C

Polarimetric L-band Radar Science Results

- Land cover classification
- Soil moisture results
- Snow depth and coverage results

Interferometric L-band Radars and Missions

- TOPSAR
- SIR-C
- JERS-1

Interferometric L-band Radar Science Results

- TOPSAR L-C comparison of topography
- SIRC L-band DEM
- Hawaii deformation using SIR-C
- Kobe and Northridge using JERS
- Amazon mosaic and change signatures

The Place of JERS-1 in History

- JERS is the first long-term Earth observing system at L-band
- JERS showed that sustaining measurements over six years creates a valuable L-band database for
 - Crustal Deformation Studies
 - Land cover change
- Experience with JERS shows us how to design future L-band SARs for science applications

Future Trends L-band SAR

- Finer Resolution
 - To recover optical quality imagery over targeted areas
- Expanded role of interferometric systems for science and commercial applications
 - Fine resolution topography
 - Land-use classification and management
 - Disaster management and mitigation
- Polarization and Frequency Diversity
 - To recover surface height and canopy height/class

JPL

DRAFT

ECHO-Elsie Concept

Place ECHO-Elsie summary chart here

ECHO-Elsie Status

- Proposal was not selected because it was not ranked as highly as other proposals
- Proposal was evaluated by NASA to be "selectable", and the science and technical plan was highly regarded.
- Many of the concepts proposed for ECHO-Elsie have made their way into thescience requirements listed in the LightSAR Announcement of Opportunity

Expected characteristics of LightSAR

Based on Announcement of Opportunity LightSAR:

- Must primarily focus on crustal deformation and ice motion mapping using L-band repeat-pass interferometry
- Will secondarily study biomass and canopy properties using Lband full polarization observations.
- Will have funding limited to about \$120M from NASA, so additional funds needed must be provided by proposal partners
- May have high resolution modes at L-band or X-band to satisfy commercial markets, but these are not required
- Is a dynamic approach to a radar mission

Expected Characteristics of ALOS

Place characteristics from Japanese ALOS briefing package here

Earth Observing System Follow-on Plans

- NASA plans to fly science missions that use SAR instruments:
 - Sustaining deformation measurements on the decadal scale beyond LightSAR
 - Land cover and biomass decadal change
 - Soil moisture and freeze-thaw monitoring
- Some of these instruments will use L-band as at least one of the bands
- NASA and NASDA may be able to find common ground in future L-band observing campaigns

Conclusions

- L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features
- JERS-1, by supplying multi-seasonal coverage of the much of the Earth, has demonstrated the importance of
- Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments
- As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus
- International coordination of multi-parameter constellations and campaigns will maximize science return

Digital Technologies for Topography Generation in the Next Decade

- Optical Stereo Mappers
 - SPOT (France), ALOS (Japan), EOS (USA), Commercial
 - Traditional but so far unable to deliver global products
- Spaceborne Laser Altimeters
 - lceSAT, VCL (USA)
 - New technology delivering profiles of canopy height
 - Lack of coverage prevents global mapping
- Radar Interferometry
 - SRTM (USA)
 - New technology expected to deliver global products
- Repeat-pass Radar
 - RadarSAT (Can), ALOS (Japan), EnviSAT(ESA), LightSAR (USA)

Differential Interferometry

When two observations are made from the same location in space but at different times, the interferometric phase is proportional to any change in the range of a surface feature directly.

Differential Interferometry and Topography

Generally two observations are made from different locations in space and at different times, so the interferometric phase is proportional to topography and topographic change.

SRTM Topography for Surface Change Applications

 If one uses SRTM data to remove topography in an interferogram to reveal surface change, then its height noise will contribute a phase noise component

$$\sigma_{\phi} = \frac{4\pi}{\lambda} \frac{B_{\perp}}{\rho_0 \sin \theta_0} \sigma_z \Rightarrow \sigma_{\Delta \rho_{\text{change}}} = \frac{B_{\perp}}{\rho_0 \sin \theta_0} \sigma_z$$

 What is the baseline below which the 10 m SRTM height noise contributes less than 3mm of displacement noise?

$$B_{\perp} < \frac{\sigma_{\Delta \rho_{\text{change}}}}{\sigma_{z}} \rho_{0} \sin \theta_{0} \approx 130 \text{m}$$

For typical polar-orbiting SARs